Menu |
Pollach, G.; Hein, W.; Berninger H.:
Calculation of saturated molasses purities (German). Zuckerindustrie 118 (1993) pp. 785-790. List of papers |
Abstract: With the aim of simplifying formulas for the calculation of saturated molasses purities, it is proposed to work on the basis of "normal temperature relationships" instead of temperature-independent "ratios of ratios". The calculation of molasses data for a given temperature then proceeds not via a single sucrose solubility number, but via pairs of solubility numbers. In that way, the familiar saturation formula can be mathematically transformed, without changing the results. If saturation equations are to take account of the nonsugar composition, in addition to temperature and the nonsugar:water ratio, it is clearer to formulate a normal temperature equation with values related to nonsugar instead of values related to water. Based on 47 analyses of "normal" and "Quentin" molasses, a multiple regression with a correlation coefficient of 0,992 was obtained. This equation, valid for 50°C, in which all values are related to nonsugar, calculates sugar per nonsugar from water and alkaline earths. An equation for the calculation of molasses purities found in the literature was transformed and compared with the results. There was good agreement in the case of normal molasses, whereas for Quentin molasses there were one-sided divergences of up to 2 purity points. |
Different variants of writing the final equations A - C |
S = Sugar NS = Nonsugar W = Water AE = Alkaline Earths (Ca+Mg) |
DM = Dry Matter qX/Y = mass ratio q = qS/DM = purity w = mass fraction |
w' = Molar concentration |
A) |
|
B) |
|
C) |
|
Table 1 with three additional columns and two columns dropped |
Trial no. |
Code | °C | qNS/W | ysat | purity qsat % | qS/NS,sat | qW/NS | w'AE/wNS | ||
analysis | analysis | calculat. | analysis | calculat. | analys. | ½mmol/g | ||||
1 | M01 | 50 | 2.13 | 1.40 | 62.8 | 61.5 | 1.689 | 1.597 | 0.469 | 0.215 |
2 | M02 | 50 | 2.09 | 1.35 | 62.4 | 62.1 | 1.659 | 1.641 | 0.478 | 0.063 |
3 | M04 | 50 | 2.08 | 1.33 | 62.3 | 62.0 | 1.650 | 1.633 | 0.481 | 0.140 |
4 | M06 | 50 | 2.03 | 1.27 | 61.8 | 62.1 | 1.616 | 1.639 | 0.493 | 0.231 |
5 | M07 | 50 | 2.08 | 1.30 | 61.7 | 61.4 | 1.610 | 1.593 | 0.481 | 0.365 |
6 | M08 | 50 | 2.06 | 1.27 | 61.5 | 62.1 | 1.594 | 1.639 | 0.485 | 0.148 |
7 | M09 | 50 | 2.08 | 1.29 | 61.4 | 61.4 | 1.593 | 1.590 | 0.481 | 0.382 |
8 | M12 | 50 | 2.09 | 1.26 | 60.8 | 60.6 | 1.548 | 1.538 | 0.478 | 0.641 |
9 | M13 | 50 | 2.08 | 1.21 | 60.0 | 59.6 | 1.503 | 1.475 | 0.481 | 1.024 |
10 | M13 | 50 | 2.59 | 1.35 | 57.4 | 56.4 | 1.345 | 1.294 | 0.386 | 1.024 |
11 | M14 | 50 | 2.05 | 1.22 | 60.4 | 61.2 | 1.528 | 1.579 | 0.488 | 0.516 |
12 | M15 | 50 | 2.11 | 1.21 | 59.6 | 59.8 | 1.477 | 1.488 | 0.474 | 0.873 |
13 | M16 | 50 | 2.07 | 1.19 | 59.7 | 59.8 | 1.482 | 1.487 | 0.483 | 0.978 |
14 | M17 | 50 | 2.10 | 1.19 | 59.3 | 58.4 | 1.458 | 1.405 | 0.476 | 1.358 |
15 | M17 | 50 | 2.62 | 1.27 | 55.6 | 55.1 | 1.252 | 1.227 | 0.382 | 1.358 |
16 | M21 | 50 | 2.08 | 1.30 | 61.8 | 62.0 | 1.618 | 1.631 | 0.482 | 0.163 |
17 | M21 | 50 | 2.56 | 1.44 | 59.2 | 59.3 | 1.449 | 1.458 | 0.391 | 0.163 |
18 | M22 | 50 | 2.10 | 1.30 | 61.4 | 61.8 | 1.593 | 1.618 | 0.476 | 0.169 |
19 | M23 | 50 | 2.09 | 1.32 | 61.8 | 61.7 | 1.619 | 1.612 | 0.478 | 0.225 |
20 | M24 | 50 | 2.07 | 1.32 | 62.1 | 61.9 | 1.641 | 1.626 | 0.483 | 0.201 |
21 | M25 | 50 | 2.07 | 1.31 | 61.9 | 61.8 | 1.624 | 1.620 | 0.482 | 0.222 |
22 | M25 | 50 | 2.57 | 1.48 | 59.7 | 59.1 | 1.482 | 1.444 | 0.389 | 0.222 |
23 | M26 | 50 | 2.07 | 1.28 | 61.3 | 61.7 | 1.586 | 1.611 | 0.482 | 0.274 |
24 | M27 | 50 | 2.08 | 1.26 | 60.9 | 61.6 | 1.561 | 1.601 | 0.481 | 0.320 |
25 | M28 | 50 | 2.08 | 0.98 | 54.9 | 54.9 | 1.215 | 1.219 | 0.481 | 2.450 |
26 | M28 | 50 | 2.61 | 1.04 | 50.7 | 50.8 | 1.027 | 1.033 | 0.383 | 2.450 |
27 | M30 | 50 | 2.05 | 1.09 | 57.8 | 58.2 | 1.371 | 1.394 | 0.488 | 1.550 |
28 | M30 | 50 | 2.54 | 1.18 | 54.5 | 54.9 | 1.195 | 1.215 | 0.394 | 1.550 |
29 | M31 | 50 | 2.06 | 1.35 | 62.7 | 62.0 | 1.682 | 1.634 | 0.485 | 0.174 |
30 | M36 | 50 | 2.07 | 1.30 | 61.8 | 61.5 | 1.615 | 1.600 | 0.484 | 0.357 |
31 | M37 | 50 | 2.05 | 1.23 | 60.8 | 61.7 | 1.548 | 1.613 | 0.488 | 0.326 |
32 | M37 | 50 | 2.52 | 1.37 | 58.3 | 59.0 | 1.398 | 1.440 | 0.397 | 0.326 |
33 | M38 | 50 | 2.05 | 1.03 | 56.5 | 56.4 | 1.297 | 1.293 | 0.488 | 2.113 |
34 | M38 | 50 | 2.62 | 1.10 | 51.9 | 52.2 | 1.079 | 1.090 | 0.381 | 2.113 |
35 | M38 | 60 | 3.06 | 1.18 | 52.5 | 52.4 | 0.989 | 0.986 | 0.326 | 2.113 |
36 | M39 | 50 | 2.07 | 1.06 | 56.8 | 56.7 | 1.316 | 1.307 | 0.484 | 1.995 |
37 | M39 | 50 | 2.58 | 1.11 | 52.6 | 52.9 | 1.112 | 1.122 | 0.387 | 1.995 |
38 | M39 | 60 | 3.22 | 1.20 | 51.7 | 52.1 | 0.961 | 0.976 | 0.310 | 1.995 |
39 | M40 | 50 | 2.09 | 1.05 | 56.4 | 56.0 | 1.294 | 1.272 | 0.479 | 2.133 |
40 | M40 | 50 | 2.58 | 1.11 | 52.5 | 52.4 | 1.106 | 1.100 | 0.388 | 2.133 |
41 | M40 | 60 | 3.11 | 1.20 | 52.6 | 52.0 | 0.995 | 0.972 | 0.321 | 2.133 |
42 | M41 | 50 | 2.06 | 1.06 | 56.9 | 57.1 | 1.320 | 1.329 | 0.484 | 1.870 |
43 | M41 | 50 | 2.57 | 1.13 | 53.0 | 53.5 | 1.127 | 1.149 | 0.389 | 1.870 |
44 | M41 | 60 | 3.15 | 1.22 | 52.7 | 53.1 | 0.998 | 1.014 | 0.318 | 1.870 |
45 | M42 | 50 | 2.06 | 1.08 | 57.5 | 57.4 | 1.351 | 1.347 | 0.486 | 1.792 |
46 | M42 | 50 | 2.53 | 1.16 | 54.2 | 54.0 | 1.185 | 1.176 | 0.396 | 1.792 |
47 | M42 | 60 | 3.11 | 1.24 | 53.4 | 53.5 | 1.026 | 1.033 | 0.321 | 1.792 |
Menu |